Наукова електронна бібліотека
періодичних видань НАН України

On certain homological invariant and its relation with Poincaré duality pairs

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Andrade, M.G.C.
dc.contributor.author Gazon, A.B.
dc.contributor.author Lima A.F.
dc.date.accessioned 2023-02-25T14:35:39Z
dc.date.available 2023-02-25T14:35:39Z
dc.date.issued 2018
dc.identifier.citation On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC: 20J05, 20J06, 57P10
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/188357
dc.description.abstract Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a more general treatment of the invariant E*(G, S,M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S,M). We analyze, through the invariant E*(G, S,M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs. uk_UA
dc.description.sponsorship The first author was partially supported by FAPESP, grant no. 2012/24454-8 and the second and third authors were supported by CAPES. The authors would like to thank the referee for useful remarks and suggestions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title On certain homological invariant and its relation with Poincaré duality pairs uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис