Показати простий запис статті
dc.contributor.author |
Andrade, M.G.C. |
|
dc.contributor.author |
Gazon, A.B. |
|
dc.contributor.author |
Lima A.F. |
|
dc.date.accessioned |
2023-02-25T14:35:39Z |
|
dc.date.available |
2023-02-25T14:35:39Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
On certain homological invariant and its relation with Poincaré duality pairs / M.G.C. Andrade, A.B. Gazon, A.F. Lima // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 177–187. — Бібліогр.: 7 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC: 20J05, 20J06, 57P10 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188357 |
|
dc.description.abstract |
Let G be a group, S = {Sᵢ, i ∊ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z₂G-module. In [4] the authors defined a homological invariant E*(G, S,M), which is “dual” to the cohomological invariant E(G, S,M), defined in [1]. In this paper we present a more general treatment of the invariant E*(G, S,M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S,M). We analyze, through the invariant E*(G, S,M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs. |
uk_UA |
dc.description.sponsorship |
The first author was partially supported by FAPESP, grant no. 2012/24454-8 and the second and third authors were supported by CAPES.
The authors would like to thank the referee for useful remarks and suggestions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On certain homological invariant and its relation with Poincaré duality pairs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті