Наукова електронна бібліотека
періодичних видань НАН України

Сходимость экстраградиентного алгоритма с монотонной регулировкой шага для вариационных неравенств и операторных уравнений

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Денисов, С.В.
dc.contributor.author Номировский, Д.А.
dc.contributor.author Рублев, Б.В.
dc.contributor.author Семенов, В.В.
dc.date.accessioned 2021-10-19T15:25:45Z
dc.date.available 2021-10-19T15:25:45Z
dc.date.issued 2019
dc.identifier.citation Сходимость экстраградиентного алгоритма с монотонной регулировкой шага для вариационных неравенств и операторных уравнений / С.В. Денисов, Д.А. Номировский, Б.В. Рублев, В.В. Семенов // Проблемы управления и информатики. — 2019. — № 3. — С. 19-30 . — Бібліогр.: 29 назв. — рос. uk_UA
dc.identifier.issn 0572-2691
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/180794
dc.description.abstract В работе рассмотрены вариационные неравенства (операторные уравнения) в гильбертовом пространстве и с дополнительными условиями вида включения в множество неподвижных точек заданного оператора. Для приближенного решения задач предложен алгоритм, являющийся суперпозицией модифицированного экстраградиентного алгоритма с монотонной регулировкой величины шага, не требующей знания константы Липшица оператора, и схемы Красносельского–Манна аппроксимации неподвижных точек. В отличие от применяемых ранее правил выбора величины шага, в данном алгоритме не производится дополнительных вычислений значений оператора и отображения проектирования. Основной результат — теорема о слабой сходимости алгоритма для задач с псевдомонотонными, липшицевыми, секвенциально слабо непрерывными операторами и квазинерастягивающими операторами, задающими дополнительные условия. uk_UA
dc.description.abstract Розглянуто варіаційні нерівності та операторні рівняння в нескінченновимірному гільбертовому просторі та з додатковими умовами виду включення в множину нерухомих точок заданого оператора. Для наближеного розв’язання задач запропоновано новий ітераційний алгоритм, що є суперпозицією модифікованого екстраградієнтного алгоритму Корпелевич з монотонним регулюванням величини кроку, що не вимагає знання константи Ліпшиця оператора, та схеми Красносельського–Манна апроксимації нерухомих точок. На відміну від правил вибору величини кроку, що застосовувалися раніше, в запропонованому алгоритмі не проводиться додаткових обчислень значень оператора і відображення проектування. Алгоритм досліджувався за допомогою теорії ітераційних фейєрівських процесів. Доведено слабку збіжність алгоритму для задач з псевдомонотонними, ліпшицевими, секвенційно слабко неперервними та квазінерозтягуючими операторами, що задають додаткові умови. Раніше аналогічні результати про слабку збіжність були відомі тільки для варіаційних нерівностей з монотонними, ліпшицевими та з нерозтягуючими операторами, що задають додаткові умови. uk_UA
dc.description.abstract A variational inequalities and operator equations in an infinite dimensional Hilbert space with additional conditions for the type of inclusion in the set of fixed points of a given operator are considered. For an approximate solution of the problems, a novel iterative algorithm that is a superposition of a modified Korpelevich extragradient algorithm with monotone step-size strategy that does not require knowledge of the Lipschitz constant of operator, and the Krasnoselskii–Mann scheme for approximating fixed points, is proposed. In contrast to the previously used rules for choosing the step size, the proposed algorithm does not perform additional calculations for the operator values and the projections mapping. The algorithm was investigated using the theory of iterative processes of the Fejer type. The weak convergence of the algorithm for problems with pseudo-monotone, Lipschitz-continuous, and sequentially weakly continuous operators and quasi-nonexpansive operators, which specify additional conditions is proved. Previously, similar results on weak convergence were known only for variational inequalities with monotone, Lipschitz-continuous operators and with nonexpansive operators, which specify additional conditions. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут кібернетики ім. В.М. Глушкова НАН України uk_UA
dc.relation.ispartof Проблемы управления и информатики
dc.subject Методы оптимизации и оптимальное управление uk_UA
dc.title Сходимость экстраградиентного алгоритма с монотонной регулировкой шага для вариационных неравенств и операторных уравнений uk_UA
dc.title.alternative Збіжність екстраградієнтного алгоритму з монотонним регулюванням кроку для варіаційних нерівностей та операторних рівнянь uk_UA
dc.title.alternative Convergence of extragradient algorithm with monotone step-size strategy for variational inequalities and operator equations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 517.988


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис