Пропонується побудова сингулярно збуреного самоспряженого оператора iз заданою ком- пактною множиною в його сингулярно неперервному спектрi. Зокрема, множина може бути фракталом наперед заданого типу. При цьому використовується конструкцiя сингулярно збу- реного оператора Ã ˜ для заданого самоспряженого оператора A в гiльбертовому просторi H, який розв’язує задачу на власнi значення Ã ψi = λiψi для злiченної множини Λ = {λi}∞ i=1 дiйс- них чисел λi ∈ R¹, |λi | < ∞, й ортонормованої системи векторiв {ψi}, i = 1, 2, . . . , iз деякими додатковими умовами загального характеру.
We propose a construction of a singularly perturbed self-adjoint operator with a given compact set in its singularly continuous spectrum. In particular, the set can be a fractal of a prescribed type. There we use the construction of a singularly perturbed operator à of a given self-adjoint operator A on a Hilbert space H such that it solves the eigen value problem Ãψi = λiψi for a countable set Λ = {λi}∞ i=1 with real numbers λi ∈ R¹, |λi | < ∞, and an orthonormal system of vectors {ψi}, i = 1, 2 . . . , under some general type conditions.