Показати простий запис статті
dc.contributor.author |
Apanasov, B.N. |
|
dc.date.accessioned |
2020-06-13T08:18:40Z |
|
dc.date.available |
2020-06-13T08:18:40Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space / B.N. Apanasov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 10-27. — Бібліогр.: 26 назв. — англ. |
uk_UA |
dc.identifier.issn |
1810-3200 |
|
dc.identifier.other |
2000 MSC. 30C65, 57Q60, 20F55, 32T99, 30F40, 32H30, 57M30 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/169429 |
|
dc.description.abstract |
We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4-dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B³ ⊂ R³ as mappings equivariant with the standard conformal action of uniform hyperbolic lattices Г ⊂ IsomH³ in the unit 3-ball and with its discrete representation G = ρ(Г) ⊂ IsomH⁴. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordism M = (H⁴∪Ω (G))/G, and the kernel of the homomorphism ρ: Г → G is a free group F₃ on three generators. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний вісник |
|
dc.title |
Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті