Наукова електронна бібліотека
періодичних видань НАН України

Approximate controllability of the wave equation with mixed boundary conditions

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Pestov, L.
dc.contributor.author Strelnikov, D.
dc.date.accessioned 2020-06-12T15:38:13Z
dc.date.available 2020-06-12T15:38:13Z
dc.date.issued 2018
dc.identifier.citation Approximate controllability of the wave equation with mixed boundary conditions / L. Pestov, D. Strelnikov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 251-263. — Бібліогр.: 14 назв. — англ. uk_UA
dc.identifier.issn 1810-3200
dc.identifier.other 2010 MSC. Primary 35R30; Secondary 35M33, 46E35
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/169401
dc.description.abstract We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω×(0, 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ × [0, T], Σ ⊂ ∂Ω of the lateral surface of the cylinder Ω × (0, T). The domain of observation is Σ × [0, 2T], and the pressure on another part (∂Ω\Σ) × [0, 2T]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace V ⊂ H¹(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincar´e inequality, we obtain a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound. uk_UA
dc.description.sponsorship This work was supported by the Volkswagen Foundation project “Modeling, Analysis and Approximation Theory toward Applications in Tomography and Inverse Problem”. The authors would like also to thank M. Belishev, V. Derkach and T. Fastovska for useful discussions and valuable remarks. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Український математичний вісник
dc.title Approximate controllability of the wave equation with mixed boundary conditions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис