Наукова електронна бібліотека
періодичних видань НАН України

Метод редукции мажоритарного класса в несбалансированных выборках

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Каврин, Д.А.
dc.contributor.author Субботин, С.А.
dc.date.accessioned 2020-05-07T18:31:39Z
dc.date.available 2020-05-07T18:31:39Z
dc.date.issued 2018
dc.identifier.citation Метод редукции мажоритарного класса в несбалансированных выборках / Д.А. Каврин, С.А. Субботин // Реєстрація, зберігання і обробка даних. — 2018. — Т. 20, № 1. — С. 51–59. — Бібліогр.: 14 назв. — рос. uk_UA
dc.identifier.issn 1560-9189
dc.identifier.other DOI: https://doi.org/10.35681/1560-9189.2018.20.1.142902
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/168688
dc.description.abstract Рассмотрены проблемы формирования обучающих выборок для построения диагностических и распознающих моделей по прецедентам в условиях несбалансированности классов. Предложен метод автоматизации формирования обучающих выборок из исходных несбалансированных выборок большого размера. Метод позволяет значительно сократить размер исходной выборки с сохранением важных топологических свойств путем редукции мажоритарного класса и восстановить количественный баланс классов. Разработано программное обеспечение, реализующее предложенный метод, которое было использовано при проведении вычислительных экспериментов на синтетических и реальных данных. Проведенные эксперименты подтвердили работоспособность и эффективность предложенного метода и реализующего его программного обеспечения. uk_UA
dc.description.abstract Розглянуто проблему формування навчальних вибірок для побудови діагностичних і розпізнавальних моделей за прецедентами в умовах незбалансованості класів. Запропоновано метод автоматизації формування навчальних вибірок з вихідних незбалансованих вибірок великого розміру. Метод дозволяє значно скоротити розмір вихідної вибірки зі збереженням важливих топологічних властивостей шляхом редукції мажоритарного класу та відновити кількісний баланс класів. Розроблено програмне забезпечення, що реалізує запропонований метод, яке було використано при виконанні обчислювальних експериментів на синтетичних і реальних даних. Проведені експерименти підтвердили працездатність та ефективність запропонованого методу та програмного забезпечення, що його реалізує. uk_UA
dc.description.abstract The problem of the sample selection from the imbalanced large-sized datasets has been addressed for constructing of the diagnostic and pattern recognition models. The goal of the work is the creation of the sampling’s automatization method from the imbalanced large-sized dataset, based on the principles of undersampling. The method of automatization of sample selection from the original imbalanced large-sized dataset has been proposed. he software implementing proposed method has been developed and used in the computational experiments on synthetic and real imbalanced datasets. The conducted experiments confirmed the efficiency and working capacity of the proposed method and its implemented software. uk_UA
dc.language.iso ru uk_UA
dc.publisher Інститут проблем реєстрації інформації НАН України uk_UA
dc.relation.ispartof Реєстрація, зберігання і обробка даних
dc.subject Технічні засоби отримання і обробки даних uk_UA
dc.title Метод редукции мажоритарного класса в несбалансированных выборках uk_UA
dc.title.alternative Метод редукції мажоритарного класу в незбалансованих вибірка uk_UA
dc.title.alternative The majority classes’ reducing method of imbalanced datasets uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 004.93


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис