Розглядається проблема розв’язностi неоднорiдної задачi Дiрiхле в обмеженiй областi для скалярного неправильно елiптичного диференцiального рiвняння з комплексними коефiцiєнтами. Дослiджено
модельний випадок, коли за область вибрано одиничний круг, а в рiвняннi вiдсутнi молодшi члени.
Доведено, що класами даних Дiрiхле, для яких задача має єдиний розв’язок у просторi Соболєва, є
простори функцiй з експоненцiальним спаданням коефiцiєнтiв Фур’є.
The solvability of the inhomogeneous Dirichlet problem in a bounded domain for scalar improperly elliptic differential equation with complex coefficients is investigated. We study a model case where the unit disk is chosen as a domain and the equation does not contain lowest terms. We prove that the problem has a unique solution in the Sobolev space for special classes of Dirichlet data that are spaces of functions with exponential decrease of the Fourier coefficients.