Рассматривается квазипериодически возбуждаемая натуральная лагранжева система на римановом многообразии. Указаны достаточные условия, при выполнении которых такая система имеет слабое квазипериодическое по Безико-вичу решение, минимизирующее усредтенный лагранжиан. Доказано, что в действительности это решение является дважды непрерывно дифференцируемой равномерной квазипериодической функцией, а соответствующая система в вариациях экспоненциально дихотомична на всей вещественной оси.
The paper deals with a quasiperiodically excited natural Lagrangian system on a Riemannian manifold. We find sufficient conditions under which this system has a weak Besicovitch quasiperiodic solution minimizing the averaged Lagrangian. It is proved that this solution is indeed a twice continuously differentiable uniformly quasiperiodic function, and the corresponding system in variations is exponentially dichotomous on the real axis.