Досліджується існування нарізно неперервної функції f : X × Y→ ℝ з одноточковою множиною точок розриву, коли X і Y задовольняють умови типу компактності. Зокрема, показано, що для компактних просторів X і Y і неізольованих точок x₀∈X і y₀∈Y існує нарізно неперервна функція f : X × Y→ ℝ з множиною {(x₀,y₀)} точок розриву тоді і тільки тоді, коли в X і Y існують послідовності непорожніх функціонально відкритих множин, які збігаються до x₀ і y₀ відповідно.
We investigate the existence of a separately continuous function f : X × Y→ ℝ with a one-point set of points of discontinuity in the case where the topological spaces X and Y satisfy conditions of compactness type. In particular, for the compact spaces X and Y and the nonizolated points x₀∈X and y₀∈Y, we show that the separately continuous function f : X × Y→ ℝ with the set of points of discontinuity {(x₀,y₀)} exists if and only if sequences of nonempty functionally open set exist in X and Y and converge to x₀ and y₀, respectively.