Показати простий запис статті
dc.contributor.author |
Буслаев, В.И. |
|
dc.date.accessioned |
2020-02-10T15:02:38Z |
|
dc.date.available |
2020-02-10T15:02:38Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
О ганкелевых определителях функций, заданных своим разложением в P-дробь / В.И. Буслаев // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 315–326. — Бібліогр.: 13 назв. — рос. |
uk_UA |
dc.identifier.issn |
1027-3190 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/164729 |
|
dc.description.abstract |
Одержано явні формули, що виражають ганкелеві визначники функцій, які задано своїм розвиненням у неперервний P-дріб, через параметри дробу. Як наслідок отримано оцінку знизу ємності множини особливих точок таких функцій, аналог теореми Ван Флека для P-дробів з граничними періодичними коефіцієнтами, інше доведення теореми Гончара про гіпотезу Лейтона, оцінку зверху радіуса кола мероморфності функції, що задана С-дробом. |
uk_UA |
dc.description.abstract |
We obtain explicit formulas that express the Hankel determinants of functions given by their expansions in continued P-fractions in terms of the parameters of the fraction. As a corollary, we obtain a lower bound for the capacity of the set of singular points of these functions, an analog of the van Vleck theorem for P-fractions with limit-periodic coefficients, another proof of the Gonchar theorem on the Leighton conjecture, and an upper bound for the radius of the disk of meromorphy of a function given by a C-fraction. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний журнал |
|
dc.subject |
Статті |
uk_UA |
dc.title |
О ганкелевых определителях функций, заданных своим разложением в P-дробь |
uk_UA |
dc.title.alternative |
On Hankel determinants of functions given by their expansions in P-fractions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.5 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті