Let P:X → V be a projection from a real Banach space X onto a subspace V and let S ⊂ X. In this setting, one can ask if S is left invariant under P, i.e., if PS ⊂ S. If V is finite-dimensional and S is a cone with particular structure, then the occurrence of the imbedding PS ⊂ S can be characterized through a geometric description. This characterization relies heavily on the structure of S, or, more specifically, on the structure of the cone S * dual to S. In this paper, we remove the structural assumptions on S * and characterize the cases where PS ⊂ S. We note that the (so-called) q-monotone shape forms a cone that (lacks structure and thus) serves as an application for our characterization.
Нехай P:X→V — проекцiя дiйсного банахового простору X на пiдпростiр V i, крiм того, S⊂X. У цiй постановцi виникає питання: чи є S лiвоiнварiантним пiд дiєю P, тобто чи має мiсце вкладення PS⊂S? Якщо пiдпростiр V є скiнченновимiрним, а S є конусом iз певною структурою, то вкладення PS⊂S може бути охарактеризовано шляхом геометричного опису. Ця характеризацiя iстотно залежить вiд структури S, або, точнiше, вiд структури конуса S∗, спряженого до S. У цiй роботi усунено структурнi припущення щодо S∗ i охарактеризовано випадки, у яких PS⊂S. Вiдзначено, що (так звана) q-монотонна форма утворює конус, який (не має структури i тому) може бути використаний для застосування нашої характеризацiї.