Показати простий запис статті
dc.contributor.author |
Сидоров, М.В. |
|
dc.date.accessioned |
2020-01-04T20:11:32Z |
|
dc.date.available |
2020-01-04T20:11:32Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності / М.В. Сидоров // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 146-161. — Бібліогр.: 16 назв. — укр. |
uk_UA |
dc.identifier.issn |
2308-5878 |
|
dc.identifier.other |
DOI: 10.32626/2308-5878.2018-18.146-161 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/162227 |
|
dc.description.abstract |
У роботі розглянуто задачу Діріхле для рівняння теплопровідності зі степенево залежним від температури коефіцієнтом теплопровідності та нелінійною функцією потужності теплових джерел. Додатний розв’язок розглядуваної задачі запропоновано знаходити, використовуючи метод двобічних наближень, побудований на основі застосування методу квазіфункцій Гріна-Рвачова. Для цього було зроблено заміну невідомої функції з метою отримати нелінійну задачу для рівняння з оператором Лапласа. Ця задача за допомогою квазіфункції Гріна-Рвачова була замінена еквівалентним інтегральним рівняння Урисона. Дослідження цього рівняння було проведено методами нелінійного аналізу у напівупорядкованих просторах, зокрема, використовуючи теорію гетеротонних операторів В. І. Опойцева. |
uk_UA |
dc.description.abstract |
In this paper, the Dirichlet problem for the heat equation with a nonlinear function of power of heat sources and a heat conductivity coefficient with power law dependence on temperature, is considered. To find a positive solution of the problem under consideration it is proposed the using of the two-sided approximations method, constructed on the basis of the application of the Green-Rvachev’s quasifunction method. For this, the unknown function was replaced in order to obtain a nonlinear problem for the equation with the Laplace operator. This problem was replaced by the equivalent Uryson integral equation using the Green-Rvachev’s quasi-function. The investigation of this equation was carried out by methods of nonlinear analysis in semi-ordered spaces, in particular, using the theory of heterotone operators by V.I. Opoǐcev. |
uk_UA |
dc.language.iso |
uk |
uk_UA |
dc.publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
uk_UA |
dc.relation.ispartof |
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
|
dc.title |
Застосування методу квазіфункцій Гріна-Рвачова для побудови двобічних наближень до розв'язку задачі Діріхле для нелінійного рівняння теплопровідності |
uk_UA |
dc.title.alternative |
The application of the Green-Rvachev quasifunction method for constructing two-sided approximations to the solution of the Dirichlet problem for a nonlinear heat equation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
517.988:519.632 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті