Показати простий запис статті
dc.contributor.author |
Измаилов, А.Ф. |
|
dc.contributor.author |
Стецюк, П.И. |
|
dc.contributor.author |
Фишер, А. |
|
dc.date.accessioned |
2019-12-27T21:25:59Z |
|
dc.date.available |
2019-12-27T21:25:59Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Алгоритм emshor и его octave реализация / А.Ф. Измаилов, П.И. Стецюк, А. Фишер // Компьютерная математика. — 2019. — № 1. — С. 132-142. — Бібліогр.: 7 назв. — рос. |
uk_UA |
dc.identifier.issn |
2616-938Х |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/161943 |
|
dc.description.abstract |
Исследуется применение метода эллипсоидов для построения алгоритма нахождения приближения к точке минимума выпуклой функции: гарантируется нахож-дение такой точки, в которой значение функции отличается от минимального не более чем на заданную величину. Алгоритм является частным случаем субградиентных методов с растяжением пространства в направлении субградиента с коэффициентом, который зависит только от размерности пространства переменных. Он может быть использован для минимизации гладких и негладких выпуклых функций нескольких десятков переменных. |
uk_UA |
dc.description.abstract |
Досліджується застосування методу еліпсоїдів для побудови алгоритму знаходження наближення до точки мінімуму опуклої функції: гарантується знаходження такої точки, в якій значення функції відрізняється від мінімального не більше, ніж на задану величину. Алгоритм є окремим випадком субградієнтних методів з розтягом простору в напрямку субградієнта з коефіцієнтом, який залежить тільки від розмірності простору змінних. Він може бути використаний для мінімізації гладких і негладких опуклих функцій декількох десятків змінних. |
uk_UA |
dc.description.abstract |
The application of the ellipsoid method for constructing an algorithm for finding an approximation to a minimum point of a convex function is investigated: the algorithm guarantees finding such a point at which the value of the function differs from the minimum by no more than a specified value. The algorithm is a special case of subgradient methods with space dilation in the direction of the subgradient with a coefficient that depends only on the dimension of the space of variables. It can be used to minimize smooth and non-smooth convex functions of several tens of variables. |
uk_UA |
dc.description.sponsorship |
Работа выполнена при финансовой поддержке Volkswagen Foundation (грант No 90 306), грантов РФФИ 17-01-00125 и 19-51-12003 ННИО_a (А.Ф. Измаилов), гранта НАН Украины 0118U005227 (П.И. Стецюк). |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
uk_UA |
dc.relation.ispartof |
Компьютерная математика |
|
dc.subject |
Теория и методы оптимизации |
uk_UA |
dc.title |
Алгоритм emshor и его octave реализация |
uk_UA |
dc.title.alternative |
Алгоритм emshor та його octave реалізація |
uk_UA |
dc.title.alternative |
Emshor algoritm and its octave implementation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
519.85 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті