Показати простий запис статті
dc.contributor.author |
Rump, W. |
|
dc.date.accessioned |
2019-06-20T03:11:02Z |
|
dc.date.available |
2019-06-20T03:11:02Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Arithmetic properties of exceptional lattice paths / W. Rump // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 101–118. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 05B30, 11B50; 52C35, 11A0 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/157386 |
|
dc.description.abstract |
For a fixed real number ρ > 0, let L be an affine
line of slope ρ
⁻¹
in R
²
. We show that the closest approximation of
L by a path P in Z
²
is unique, except in one case, up to integral
translation. We study this exceptional case. For irrational ρ, the
projection of P to L yields two quasicrystallographic tilings in the
sense of Lunnon and Pleasants [5]. If ρ satisfies an equation x
² =
mx + 1 with m ∈ Z, both quasicrystals are mapped to each other
by a substitution rule. For rational ρ, we characterize the periodic
parts of P by geometric and arithmetic properties, and exhibit
a relationship to the hereditary algebras Hρ(K) over a field K
introduced in a recent proof of a conjecture of Ro˘ıter. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Arithmetic properties of exceptional lattice paths |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті