Показати простий запис статті
dc.contributor.author |
Fel’shtyn, A. |
|
dc.contributor.author |
Goncalves, D.L. |
|
dc.date.accessioned |
2019-06-20T03:07:55Z |
|
dc.date.available |
2019-06-20T03:07:55Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups / A. Fel’shtyn, D.L. Goncalves // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 36–48. — Бібліогр.: 22 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 20E45, 37C25, 55M20. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/157372 |
|
dc.description.abstract |
Let φ : G → G be a group endomorphism where
G is a finitely generated group of exponential growth, and denote
by R(φ) the number of twisted φ-conjugacy classes. Fel’shtyn and
Hill [7] conjectured that if φ is injective, then R(φ) is infinite. This
conjecture is true for automorphisms of non-elementary Gromov
hyperbolic groups, see [17] and [6]. It was showed in [12] that the
conjecture does not hold in general. Nevertheless in this paper,
we show that the conjecture holds for injective homomorphisms for
the family of the Baumslag-Solitar groups B(m,n) where m 6= n
and either m or n is greater than 1, and for automorphisms for the
case m = n > 1. family of the Baumslag-Solitar groups B(m,n)
where m 6= n. |
uk_UA |
dc.description.sponsorship |
This work was initiated during the visit of the second author to Siegen University
from September 13 to September 20, 2003. The visit was partially supported by a grant
of the “Projeto tem´atico Topologia Alg´ebrica e Geom´etrica-FAPESP". The second
author would like to thank Professor U. Koschorke for making this visit possible and
for the hospitality. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті