Показати простий запис статті
dc.contributor.author |
Denecke, K. |
|
dc.contributor.author |
Jampachon, P. |
|
dc.date.accessioned |
2019-06-18T17:30:53Z |
|
dc.date.available |
2019-06-18T17:30:53Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 08A40, 08A60, 08A02, 20M35. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156591 |
|
dc.description.abstract |
In this paper the well-known connection between
hyperidentities of an algebra and identities satisfied by the clone
of this algebra is studied in a restricted setting, that of n-ary full
hyperidentities and identities of the n-ary clone of term operations
which are induced by full terms. We prove that the n-ary full
terms form an algebraic structure which is called a Menger algebra
of rank n. For a variety V , the set IdF
n V of all its identities built
up by full n-ary terms forms a congruence relation on that Menger
algebra. If IdF
n V is closed under all full hypersubstitutions, then
the variety V is called n−F−solid. We will give a characterization
of such varieties and apply the results to 2 − F−solid varieties of
commutative groupoids. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Clones of full terms |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті