Показати простий запис статті
dc.contributor.author |
Ustimenko, V. |
|
dc.date.accessioned |
2019-06-17T19:13:48Z |
|
dc.date.available |
2019-06-17T19:13:48Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
On new multivariate cryptosystems with nonlinearity gap / V. Ustimenko // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 331-348. — Бібліогр.: 20 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:12Y05, 12Y99, 05C81, 05C85, 05C90, 94A60, 14G50. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156037 |
|
dc.description.abstract |
The pair of families of bijective multivariate maps of kind Fn and Fn⁻¹ on affine space Kⁿ over finite commutative ring K given in their standard forms has a nonlinearity gap if the degree of Fn is bounded from above by independent constant d and degree of F⁻¹ is bounded from below by cⁿ, c>1. We introduce examples of such pairs with invertible decomposition Fn=Gn¹Gn²…Gnk, i.e. the decomposition which allows to compute the value of Fⁿ⁻¹ in given point p=(p1,p2,…,pn) in a polynomial time O(n²).
The pair of families Fn, F′n of nonbijective polynomial maps of affine space Kn such that composition FnF′n leaves each element of K∗n unchanged such that deg(Fn) is bounded by independent constant but deg(F′n) is of an exponential size and there is a decomposition Gn¹Gn²…Gnk of Fn which allows to compute the reimage of vector from F(K*ⁿ) in time 0(n²). We introduce examples of such families in cases of rings K=Fq and K=Zm. |
uk_UA |
dc.description.sponsorship |
This research is partially supported by the grant PIRSES-GA-2013-612669 of the
7th Framework Programme of European Commission. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On new multivariate cryptosystems with nonlinearity gap |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті