Показати простий запис статті
dc.contributor.author |
Chernousova, Zh.T. |
|
dc.contributor.author |
Dokuchaev, M.A. |
|
dc.contributor.author |
Khibina, M.A. |
|
dc.contributor.author |
Kirichenko, V.V. |
|
dc.contributor.author |
Miroshnichenko, S.G. |
|
dc.contributor.author |
Zhuravlev, V.N. |
|
dc.date.accessioned |
2019-06-16T15:30:26Z |
|
dc.date.available |
2019-06-16T15:30:26Z |
|
dc.date.issued |
2002 |
|
dc.identifier.citation |
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/155280 |
|
dc.description.abstract |
We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With
such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect
ring A as the maximal real eigen-value of its adjacency matrix. A
tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if
Λ is hereditary. We give an example of a non-integral Gorenstein
tiled order. We prove that a reduced (0, 1)-order is Gorenstein if
and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where
w(Λ) is a width of Λ. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті