Показати простий запис статті
dc.contributor.author |
Krysztowiak, P. |
|
dc.contributor.author |
Sysło, M.M. |
|
dc.date.accessioned |
2019-06-15T19:51:52Z |
|
dc.date.available |
2019-06-15T19:51:52Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:90C27, 90C59. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154747 |
|
dc.description.abstract |
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11]
a lower bound for the jump number of two-dimensional posets.
Moreover, by other techniques we prove
an approximation ratio of n/ log(log(n)) for 2D orders. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
A tabu search approach to the jump number problem |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті