Показати простий запис статті

dc.contributor.author Krysztowiak, P.
dc.contributor.author Sysło, M.M.
dc.date.accessioned 2019-06-15T19:51:52Z
dc.date.available 2019-06-15T19:51:52Z
dc.date.issued 2015
dc.identifier.citation A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC:90C27, 90C59.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/154747
dc.description.abstract We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title A tabu search approach to the jump number problem uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис