Анотація:
Let n≥2 be a positive integer, K an arbitrary field, and q=[q⁽¹⁾|…|q⁽ⁿ⁾] an n-block matrix of n×n square matrices q⁽¹⁾,…,q⁽ⁿ⁾ with coefficients in K satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations Mqn(K) of the full matrix algebra Mn(K) in the sense of Fujita-Sakai-Simson [7]. A characterisation of all block matrices q=[q⁽¹⁾|…|q⁽ⁿ⁾] such that the algebra Mqn(K) is basic and right biserial is given in the paper. We also prove that a basic algebra Mqn(K) is right biserial if and only if Mqn(K) is right special biserial. It is also shown that the K-dimensions of the left socle of Mqn(K) and of the right socle of Mqn(K) coincide, in case Mqn(K) is basic and biserial.