Показати простий запис статті
dc.contributor.author |
Kamalian, R.R. |
|
dc.date.accessioned |
2019-06-15T12:03:07Z |
|
dc.date.available |
2019-06-15T12:03:07Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
On one-sided interval edge colorings of biregular bipartite graphs / R.R. Kamalian // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 193-199. — Бібліогр.: 29 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:05C15, 05C50, 05C85. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154262 |
|
dc.description.abstract |
A proper edge t-coloring of a graph G is a coloring of edges of
G with colors 1,2,…,t such that all colors are used, and no
two adjacent edges receive the same color. The set of colors of
edges incident with a vertex x is called a spectrum of x. Any
nonempty subset of consecutive integers is called an interval. A
proper edge t-coloring of a graph G is interval in the vertex
x if the spectrum of x is an interval. A proper edge
t-coloring φ of a graph G is interval on a subset R0
of vertices of G, if for any x∈R0, φ is interval in
x. A subset R of vertices of G has an i-property if there is
a proper edge t-coloring of G which is interval on R. If G
is a graph, and a subset R of its vertices has an i-property,
then the minimum value of t for which there is a proper edge
t-coloring of G interval on R is denoted by wR(G). We estimate the value of this parameter for biregular bipartite graphs in the case when R is one of the sides of a bipartition of the graph |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On one-sided interval edge colorings of biregular bipartite graphs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті