Показати простий запис статті
dc.contributor.author |
Guédénon, T. |
|
dc.date.accessioned |
2019-06-15T12:01:00Z |
|
dc.date.available |
2019-06-15T12:01:00Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:16D40, 16W50, 16W30. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154259 |
|
dc.description.abstract |
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A. |
uk_UA |
dc.description.sponsorship |
The author is grateful to the referee for his or her interesting remarksand helpful suggestions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Projectivity and flatness over the graded ring of normalizing elements |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті