Показати простий запис статті
dc.contributor.author |
Catarino, P. |
|
dc.contributor.author |
Higgins, P.M. |
|
dc.contributor.author |
Levi, I. |
|
dc.date.accessioned |
2019-06-15T11:42:40Z |
|
dc.date.available |
2019-06-15T11:42:40Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations / P. Catarino, P.M. Higgins, I. Levi// Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 162-171. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:20M20, 05C25. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154250 |
|
dc.description.abstract |
It is well-known [16] that the semigroup Tn of all total transformations of a given n-element set Xn is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain Xn is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of Xn is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain Xn are covered by their inverse subsemigroups precisely when n≤3. |
uk_UA |
dc.description.sponsorship |
The first author acknowledges support by the Portuguese Govern-ment through the Portuguese Foundation FCT under the project PEst-OE/MAT/UI4080/2014. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті