Показати простий запис статті

dc.contributor.author Boykett, T.
dc.date.accessioned 2019-06-14T03:41:55Z
dc.date.available 2019-06-14T03:41:55Z
dc.date.issued 2009
dc.identifier.citation All difference family structures arise from groups / T. Boykett // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/153380
dc.description.abstract Planar nearrings have been used to define classes of 2-designs since Ferrero's work in 1970. These 2-designs are a class of difference families. Recent work from Pianta has generalised Ferrero and Clay's work with planar nearrings to investigate planar nearrings with nonassociative additive structure. Thus we are led to the question of nonassociative difference families. Difference families are traditionally built using groups as their basis. This paper looks at what sort of generalized difference family constructions could be made, using the standard basis of translation and difference. We determine minimal axioms for a difference family structure to give a 2-design. Using these minimal axioms we show that we obtain quasigroups. These quasigroups are shown to be isotopic to groups and the derived 2-designs from the nonassociative difference family are identical to the 2-designs from the isotopic groups. Thus all difference families arise from groups. This result will be of interest to those using nonstandard algebras as bases for defining 2-designs. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title All difference family structures arise from groups uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис