Показати простий запис статті
dc.contributor.author |
Gavran, V.S. |
|
dc.contributor.author |
Stepukh, V.V. |
|
dc.date.accessioned |
2019-06-14T03:25:55Z |
|
dc.date.available |
2019-06-14T03:25:55Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:13N15; 13N99. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/153346 |
|
dc.description.abstract |
Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly semisimple if there exists a polynomial g such that Df(g) = λg for some nonzero λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of K[x, y] with zero divergence). We give such a description for polynomials f with the separated variables, i.e. which are of the form: f(x, y) = f₁(x)f₂(y) for some f₁(t), f₂(t) ∈ K[t]. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On weakly semisimple derivations of the polynomial ring in two variables |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті