Анотація:
In the case where a group G is the product G = AB of Abelian subgroups A and B, one of which has a finite 0-rank, it is proved that the Fitting subgroup F and the Hirsch - Plotkin radical R admit the decompositions F = (F⋂A)(F⋂B) and R = (R⋂A)(R⋂B), respectively. This gives the affirmative answer to B. Amberg's question.