Наукова електронна бібліотека
періодичних видань НАН України

Comparative analysis of nuclear localization signal (NLS) prediction methods

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Lisitsyna, O.M.
dc.contributor.author Seplyarskiy, V.B.
dc.contributor.author Sheval, E.V.
dc.date.accessioned 2019-06-13T10:14:17Z
dc.date.available 2019-06-13T10:14:17Z
dc.date.issued 2017
dc.identifier.citation Comparative analysis of nuclear localization signal (NLS) prediction methods / O.M. Lisitsyna, V.B. Seplyarskiy, E.V. Sheval // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 147-154. — Бібліогр.: 28 назв. — англ. uk_UA
dc.identifier.issn 0233-7657
dc.identifier.other DOI: http://dx.doi.org/10.7124/bc.00094C
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/152918
dc.description.abstract Aim. Comparative analysis of six state-of-the-art nuclear localization signal (NLS) prediction methods (PSORT II, NucPred, cNLSMapper, NLStradamus, NucImport and seqNLS). Methods. Each program was tested for correct predictions using a dataset of 155 experimentally determined NLSs and for false-positives using a dataset of 155 transmembrane proteins, which putatively lack NLS. Results. The most suitable NLS predictors wer fond to be NucPred, NLStradamus and seqNLS; these programs provide the maximum rate of correct to wrong predictions among the tested programs. However, the best results obtained by these programs were only ~ 45 % of the correct predictions. Conclusion. The identification of novel NLSs by predictors still requires experimental verification. uk_UA
dc.description.abstract Мета. Ідентифікація сигналів ядерної локалізації (NLS) в амінокислотній послідовності білків за допомогою експериментальних методів залишається коштовним і тривалис процесом. Тому в останній час велику популярність отримали комп'ютерні методи прогнозування NLS. Методи. В даній статті ми провели порівняльний аналіз достовірності прогнозування NLS шести різних програм (PSORT II, ​​NucPred, cNLSMapper, NLStradamus, NucImport та SeqNLS). Для кожного алгоритма було оцінена доля істинно позитивних прогнозів на вибірки з 155 експериментально визначених NLS з 128 білків людини, а також частку помилкових подій у вибірці з 155 трансмембранних білків людини, які, як видно, позбавлені NLS. Результати. Найбільшу кількість вірно прогнозованих NLS при найменшій частці хибнопозитивних результатів було отримано для трьох програм: NucPred, NLStradamus та seqNLS. Однак навіть при набільшій ступені достовірності дані алгоритми прогнозують вірно не більше 45 % експериментально визначених NLS. Висновки. Використання будь-яких алгоритмів прогнозування NLS вимагає експериментальної перевірки отриманих результатів. uk_UA
dc.description.abstract Цель. Идентификация сигналов ядерной локализации (NLS) в аминокислотной последовательности белка экспериментальными методами остается дорогостоящим и долгим процессом. Поэтому в последнее время большую популярность получили компьютерные методы предсказания NLS. Методы. В данной статье мы провели сравнительный анализ достоверности предсказания NLS шести различных программ (PSORT II, NucPred, cNLSMapper, NLStradamus, NucImport и SeqNLS). Для каждого алгоритма была оценена доля истинно положительных предсказаний на выборке из 155 экспериментально определенных NLS из 128 человеческих белков, а также доля ложноположительных предсказаний на выборке из 155 трансмембранных белков человека, которые, предположительно, лишены NLS. Наибольшее количество правильно предсказанных NLS при наименьшей доле ложноположительных результатов было получено для трех программ: NucPred, NLStradamus и seqNLS. Однако даже при наибольшей степени достоверности данные алгоритмы предсказывают правильно не более 45% экспериментально определенных NLS, т.е. использование любых алгоритмов предсказания NLS требует экспериментальной проверки получаемых результатов. uk_UA
dc.description.sponsorship The work was supported by the Russian Science Foundation (project 14-15-00199). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут молекулярної біології і генетики НАН України uk_UA
dc.relation.ispartof Вiopolymers and Cell
dc.subject Bioinformatics uk_UA
dc.title Comparative analysis of nuclear localization signal (NLS) prediction methods uk_UA
dc.title.alternative Порівняльний аналіз методів передбачення сигналів ядерної локалізації (NLS) uk_UA
dc.title.alternative Сравнительный анализ методов предсказания сигналов ядерной локализации (NLS) uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 577.112


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис