Анотація:
Let Tn(x) be the degree-n Chebyshev polynomial of the first kind. It is known [1,13] that Tp(x)≡xpmodp, when p is an odd prime, and therefore, Tp(a)≡amodp for all a. Our main result is the characterization of composite numbers n satisfying the condition Tn(a)≡amodn, for any integer a. We call these pseudoprimes Chebyshev numbers, and show that n is a Chebyshev number if and only if n is odd, squarefree, and for each of its prime divisors p, n≡±1modp−1 and n≡±1modp+1. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than 10¹⁰, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.