Наукова електронна бібліотека
періодичних видань НАН України

On the relation between completeness and H-closedness of pospaces without infinite antichains

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Yokoyama, T.
dc.date.accessioned 2019-06-09T15:36:33Z
dc.date.available 2019-06-09T15:36:33Z
dc.date.issued 2013
dc.identifier.citation On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/152296
dc.description.abstract We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR]. uk_UA
dc.description.sponsorship The author is partially supported by the JST CREST Program at Creative Research Institution, Hokkaido University. I would like to thank Professor Dušan Repovš for informing me oftheir interesting works. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title On the relation between completeness and H-closedness of pospaces without infinite antichains uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис