Показати простий запис статті
dc.contributor.author |
Protasov, I.V. |
|
dc.contributor.author |
Slobodianiuk, S. |
|
dc.date.accessioned |
2019-06-09T06:10:55Z |
|
dc.date.available |
2019-06-09T06:10:55Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:05B40, 20A05. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152243 |
|
dc.description.abstract |
A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Prethick subsets in partitions of groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті