Показати простий запис статті
dc.contributor.author |
Banakh, T. |
|
dc.contributor.author |
Gavrylkiv, V. |
|
dc.date.accessioned |
2019-06-08T09:42:17Z |
|
dc.date.available |
2019-06-08T09:42:17Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 06A12, 20M10. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152184 |
|
dc.description.abstract |
Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches. |
uk_UA |
dc.description.sponsorship |
The first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Algebra in superextensions of semilattices |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті