Наукова електронна бібліотека
періодичних видань НАН України

Invariant Discretization Schemes Using Evolution-Projection Techniques

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Bihlo, A.
dc.contributor.author Nave, J.
dc.date.accessioned 2019-02-21T07:06:03Z
dc.date.available 2019-02-21T07:06:03Z
dc.date.issued 2013
dc.identifier.citation Invariant Discretization Schemes Using Evolution-Projection Techniques / A. Bihlo, J. Nave // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 65M06; 58J70; 35K05
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.052
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149346
dc.description.abstract Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. The authors thank Professor Roman Popovych for valuable discussions and careful reading of the manuscript. The valuable remarks of the anonymous referees are much appreciated. This research was supported by the Austrian Science Fund (FWF), project J3182–N13 (AB). JCN wishes to acknowledge partial support from the NSERC Discovery Program, and the National Science Foundation through grant DMS-0813648. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Invariant Discretization Schemes Using Evolution-Projection Techniques uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис