Показати простий запис статті
dc.contributor.author |
Dunkl, C.F. |
|
dc.date.accessioned |
2019-02-19T18:33:28Z |
|
dc.date.available |
2019-02-19T18:33:28Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 1 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33C52; 33C20 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.043 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149200 |
|
dc.description.abstract |
This is a sequel to [SIGMA 9 (2013), 007, 23 pages], in which there is a construction of a 2×2 positive-definite matrix function K(x) on R². The entries of K(x) are expressed in terms of hypergeometric functions. This matrix is used in the formula for a Gaussian inner product related to the standard module of the rational Cherednik algebra for the group W(B₂) (symmetry group of the square) associated to the (2-dimensional) reflection representation. The algebra has two parameters: k₀, k₁. In the previous paper K is determined up to a scalar, namely, the normalization constant. The conjecture stated there is proven in this note. An asymptotic formula for a sum of ₃F₂-type is derived and used for the proof. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті