Наукова електронна бібліотека
періодичних видань НАН України

Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Dunkl, C.F.
dc.date.accessioned 2019-02-19T18:33:28Z
dc.date.available 2019-02-19T18:33:28Z
dc.date.issued 2013
dc.identifier.citation Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 1 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 33C52; 33C20
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.043
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149200
dc.description.abstract This is a sequel to [SIGMA 9 (2013), 007, 23 pages], in which there is a construction of a 2×2 positive-definite matrix function K(x) on R². The entries of K(x) are expressed in terms of hypergeometric functions. This matrix is used in the formula for a Gaussian inner product related to the standard module of the rational Cherednik algebra for the group W(B₂) (symmetry group of the square) associated to the (2-dimensional) reflection representation. The algebra has two parameters: k₀, k₁. In the previous paper K is determined up to a scalar, namely, the normalization constant. The conjecture stated there is proven in this note. An asymptotic formula for a sum of ₃F₂-type is derived and used for the proof. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис