Показати простий запис статті

dc.contributor.author Shemyakova, E.
dc.date.accessioned 2019-02-19T18:29:49Z
dc.date.available 2019-02-19T18:29:49Z
dc.date.issued 2013
dc.identifier.citation Invertible Darboux Transformations / E. Shemyakova // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37K10; 37K15
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.002
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149197
dc.description.abstract For operators of many different kinds it has been proved that (generalized) Darboux transformations can be built using so called Wronskian formulae. Such Darboux transformations are not invertible in the sense that the corresponding mappings of the operator kernels are not invertible. The only known invertible ones were Laplace transformations (and their compositions), which are special cases of Darboux transformations for hyperbolic bivariate operators of order 2. In the present paper we find a criteria for a bivariate linear partial differential operator of an arbitrary order d to have an invertible Darboux transformation. We show that Wronkian formulae may fail in some cases, and find sufficient conditions for such formulae to work. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Invertible Darboux Transformations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис