Показати простий запис статті

dc.contributor.author Takasaki, K.
dc.date.accessioned 2019-02-19T18:21:19Z
dc.date.available 2019-02-19T18:21:19Z
dc.date.issued 2012
dc.identifier.citation Old and New Reductions of Dispersionless Toda Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 35Q99; 37K10; 53B50; 53D45
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.102
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149183
dc.description.abstract This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. We thank the referees for many valuable comments. This work is partly supported by JSPS Grants-in-Aid for Scientific Research No. 21540218 and No. 22540186 from the Japan Society for the Promotion of Science. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Old and New Reductions of Dispersionless Toda Hierarchy uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис