Показати простий запис статті
dc.contributor.author |
Komech, A.I. |
|
dc.contributor.author |
Komech, A.A. |
|
dc.date.accessioned |
2019-02-19T12:19:34Z |
|
dc.date.available |
2019-02-19T12:19:34Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio / A.I. Komech, A.A. Komech // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 58 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 35B41; 37K40; 37L30; 37N20; 81Q05 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148974 |
|
dc.description.abstract |
We review recent results on global attractors of U(1)-invariant dispersive Hamiltonian systems. We study several models based on the Klein-Gordon equation and sketch the proof that in these models, under certain generic assumptions, the weak global attractor is represented by the set of all solitary waves. In general, the attractors may also contain multifrequency solitary waves; we give examples of systems which contain such solutions. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті