Наукова електронна бібліотека
періодичних видань НАН України

Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Komech, A.I.
dc.contributor.author Komech, A.A.
dc.date.accessioned 2019-02-19T12:19:34Z
dc.date.available 2019-02-19T12:19:34Z
dc.date.issued 2008
dc.identifier.citation Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio / A.I. Komech, A.A. Komech // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 58 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 35B41; 37K40; 37L30; 37N20; 81Q05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148974
dc.description.abstract We review recent results on global attractors of U(1)-invariant dispersive Hamiltonian systems. We study several models based on the Klein-Gordon equation and sketch the proof that in these models, under certain generic assumptions, the weak global attractor is represented by the set of all solitary waves. In general, the attractors may also contain multifrequency solitary waves; we give examples of systems which contain such solutions. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equatio uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис