Показати простий запис статті
dc.contributor.author |
Fordy, A.P. |
|
dc.contributor.author |
Xenitidis, P. |
|
dc.date.accessioned |
2019-02-18T15:52:28Z |
|
dc.date.available |
2019-02-18T15:52:28Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice / A.P. Fordy, P. Xenitidis // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 6 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 37K05; 37K10; 37K35; 39A05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.051 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148563 |
|
dc.description.abstract |
We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In particular, we introduced a subclass, which we called ''self-dual''. In this paper we discuss the continuous symmetries of these systems, their reductions and the relation of the latter to the Bogoyavlensky equation. |
uk_UA |
dc.description.sponsorship |
PX acknowledges support from the EPSRC grant Structure of partial difference equations with
continuous symmetries and conservation laws, EP/I038675/1. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті