Показати простий запис статті
dc.contributor.author |
Blaom, A.D. |
|
dc.date.accessioned |
2019-02-18T15:14:02Z |
|
dc.date.available |
2019-02-18T15:14:02Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53C05; 58H05; 53C07 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.114 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148549 |
|
dc.description.abstract |
A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Cartan Connections on Lie Groupoids and their Integrability |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті