Показати простий запис статті

dc.contributor.author Blaom, A.D.
dc.date.accessioned 2019-02-18T15:14:02Z
dc.date.available 2019-02-18T15:14:02Z
dc.date.issued 2016
dc.identifier.citation Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53C05; 58H05; 53C07
dc.identifier.other DOI:10.3842/SIGMA.2016.114
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148549
dc.description.abstract A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Cartan Connections on Lie Groupoids and their Integrability uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис