Наукова електронна бібліотека
періодичних видань НАН України

Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Li, H.
dc.contributor.author Sun, J.
dc.contributor.author Xu, Y.
dc.date.accessioned 2019-02-18T12:42:41Z
dc.date.available 2019-02-18T12:42:41Z
dc.date.issued 2012
dc.identifier.citation Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 41A05; 41A10
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.067
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148448
dc.description.abstract The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type. uk_UA
dc.description.sponsorship The work of the first author was partially supported by NSFC Grants 10971212 and 91130014.The work of the second author was partially supported by NSFC Grant 60970089. The work of the third author was supported in part by NSF Grant DMS-110 6113 and a grant from the Simons Foundation (# 209057 to Yuan Xu). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис