Показати простий запис статті
dc.contributor.author |
Calogero, F. |
|
dc.contributor.author |
Yi, G. |
|
dc.date.accessioned |
2019-02-18T12:40:52Z |
|
dc.date.available |
2019-02-18T12:40:52Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
A New Class of Solvable Many-Body Problems / F. Calogero, G. Yi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 24 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70F10; 70H06; 37J35; 37K10 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.066 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148447 |
|
dc.description.abstract |
A new class of solvable N-body problems is identified. They describe N unit-mass point particles whose time-evolution, generally taking place in the complex plane, is characterized by Newtonian equations of motion ''of goldfish type'' (acceleration equal force, with specific velocity-dependent one-body and two-body forces) featuring several arbitrary coupling constants. The corresponding initial-value problems are solved by finding the eigenvalues of a time-dependent N×N matrix U(t) explicitly defined in terms of the initial positions and velocities of the N particles. Some of these models are asymptotically isochronous, i.e. in the remote future they become completely periodic with a period T independent of the initial data (up to exponentially vanishing corrections). Alternative formulations of these models, obtained by changing the dependent variables from the N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html.
We would like to thank an unknown referee whose intervention allowed us to eliminate a mistake contained in the original version of our paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A New Class of Solvable Many-Body Problems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті