Показати простий запис статті

dc.contributor.author Fordy, A.P.
dc.date.accessioned 2019-02-16T08:12:26Z
dc.date.available 2019-02-16T08:12:26Z
dc.date.issued 2007
dc.identifier.citation Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 35Q40; 70H06
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147791
dc.description.abstract We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Quantum Super-Integrable Systems as Exactly Solvable Models uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис