Показати простий запис статті
dc.contributor.author |
Ragnisco, O. |
|
dc.contributor.author |
Ballesteros, A. |
|
dc.contributor.author |
Herranz, F.J. |
|
dc.contributor.author |
Musso, F. |
|
dc.date.accessioned |
2019-02-16T08:10:54Z |
|
dc.date.available |
2019-02-16T08:10:54Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37J35; 17B37 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147788 |
|
dc.description.abstract |
An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 22–24, 2006, Budapest, Hungary). This work was partially supported by the Ministerio de Educaci´on y Ciencia (Spain, Project FIS2004-07913), by the Junta de Castilla y Le´on (Spain, Project VA013C05), and by the INFN–CICyT (Italy–Spain). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті