Показати простий запис статті
dc.contributor.author |
Bershtein, O. |
|
dc.contributor.author |
Kolisnyk, Y. |
|
dc.date.accessioned |
2019-02-14T17:45:02Z |
|
dc.date.available |
2019-02-14T17:45:02Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 33D45; 42C10 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2011.078 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147404 |
|
dc.description.abstract |
In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html.
This project started out as joint work with L. Vaksman and D. Shklyarov. We are grateful to
both of them for helpful discussions and drafts with preliminary definitions and computations. Also we are grateful for referees for their comments that help to improve and simplify our exposition. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті