Показати простий запис статті

dc.contributor.author Kirillov, A.N.
dc.date.accessioned 2019-02-14T14:43:14Z
dc.date.available 2019-02-14T14:43:14Z
dc.date.issued 2007
dc.identifier.citation Skew Divided Difference Operators and Schubert Polynomials / A.N. Kirillov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 12 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 05E15; 05E05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147361
dc.description.abstract We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with positive integer coefficients. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. This note is based on the lectures “Schubert polynomials” delivered in the Spring 1995 at the University of Minneapolis and in the Spring 1996 at the University of Tokyo. I would like to thank my colleagues from these universities for hospitality and support.The first version of this paper has appeared as a preprint q-alg/9712053. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Skew Divided Difference Operators and Schubert Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис