Показати простий запис статті
dc.contributor.author |
Kirillov, A.N. |
|
dc.date.accessioned |
2019-02-14T14:43:14Z |
|
dc.date.available |
2019-02-14T14:43:14Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Skew Divided Difference Operators and Schubert Polynomials / A.N. Kirillov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 05E15; 05E05 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147361 |
|
dc.description.abstract |
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with positive integer coefficients. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. This note is based on the lectures “Schubert polynomials” delivered in the Spring 1995 at the University of Minneapolis and in the Spring 1996 at the University of Tokyo. I would like to thank my colleagues from these universities for hospitality and support.The first version of this paper has appeared as a preprint q-alg/9712053. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Skew Divided Difference Operators and Schubert Polynomials |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті