Наукова електронна бібліотека
періодичних видань НАН України

Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kalnins, E.G.
dc.contributor.author Miller Jr., W.
dc.contributor.author Post, S.
dc.date.accessioned 2019-02-13T18:06:22Z
dc.date.available 2019-02-13T18:06:22Z
dc.date.issued 2011
dc.identifier.citation Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81R12; 33C45
dc.identifier.other DOI:10.3842/SIGMA.2011.051
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147168
dc.description.abstract We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. Thanks to Jonathan Kress for valuable advice on computer verification of the dif ference operator realization for the structure formulas. S.P. acknowledges a postdoctoral IMS fellowship awarded by the Mathematical Physics Laboratory of the Centre de Recherches Math´ematiques. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис