Показати простий запис статті
dc.contributor.author |
Varchenko, A. |
|
dc.contributor.author |
Young, C.A.S. |
|
dc.date.accessioned |
2019-02-13T16:57:57Z |
|
dc.date.available |
2019-02-13T16:57:57Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 82B23; 32S22; 17B81; 81R12 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.091 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147118 |
|
dc.description.abstract |
We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''extended'' master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an ''extended'' non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111-163, math.QA/0209017], for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z₂-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space. |
uk_UA |
dc.description.sponsorship |
The research of AV is supported in part by NSF grant DMS-1362924. CY is grateful to the
Department of Mathematics at UNC Chapel Hill for hospitality during a visit in October 2014
when this work was initiated. CY thanks Benoit Vicedo for valuable discussions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Populations of Solutions to Cyclotomic Bethe Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті