Показати простий запис статті

dc.contributor.author Maszczyk, T.
dc.contributor.author Sütlü, S.
dc.date.accessioned 2019-02-13T16:47:03Z
dc.date.available 2019-02-13T16:47:03Z
dc.date.issued 2015
dc.identifier.citation Cyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 19D55; 57T15; 06A15; 46A20
dc.identifier.other DOI:10.3842/SIGMA.2015.041
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147108
dc.description.abstract A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed. uk_UA
dc.description.sponsorship The authors would like to thank the anonymous referees for their constructive comments improving the paper. The paper was partially supported by the NCN grant 2011/01/B/ST1/06474. S. Sutlu would like to thank his former PhD advisor B. Rangipour for drawing his attention to the homology of the coalgebra-Galois extensions, Institut des Hautes Etudes Scientifiques (IHES) ´ for the hospitality provided during part of this work, and finally the organizers of the conference “From Poisson Brackets to Universal Quantum Symmetries”, held at IMPAN, Warsaw, for the stimulating environment provided. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Cyclic Homology and Quantum Orbits uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис