Показати простий запис статті
dc.contributor.author |
Rösler, M. |
|
dc.contributor.author |
Voit, M. |
|
dc.date.accessioned |
2019-02-12T18:12:01Z |
|
dc.date.available |
2019-02-12T18:12:01Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33C52; 43A90; 60F05; 60B15; 43A62; 33C80; 33C67 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.013 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146999 |
|
dc.description.abstract |
We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті