Показати простий запис статті
dc.contributor.author |
Ormerod, C.M. |
|
dc.date.accessioned |
2019-02-11T17:11:42Z |
|
dc.date.available |
2019-02-11T17:11:42Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ. |
uk_UA |
dc.identifier.isbn |
DOI:10.3842/SIGMA.2014.002 |
|
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 39A10; 37K15; 33C05 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146850 |
|
dc.description.abstract |
We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full
collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html.
This research is supported by Australian Research Council Discovery Grant #DP110100077. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті