Показати простий запис статті
dc.contributor.author |
Chi-Kwong Fok |
|
dc.date.accessioned |
2019-02-11T16:43:30Z |
|
dc.date.available |
2019-02-11T16:43:30Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
The Real K-Theory of Compact Lie Groups / Chi-Kwong Fok // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 19L47; 57T10 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2014.022 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146832 |
|
dc.description.abstract |
Let G be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution σG and viewed as a G-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) KR-theory of (G,σG) by drawing on previous results on the module structure of the KR-theory and the ring structure of the equivariant K-theory. |
uk_UA |
dc.description.sponsorship |
The author would like to thank Professor Reyer Sjamaar for suggesting this problem, painstakingly
proofreading the manuscript, his patient guidance and encouragement throughout the
course of this project. He also thanks the referees for their critical comments, pointing out the relevance of the work [7] and a mistake in the definition of ϕ(dρ) in [9] to him. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Real K-Theory of Compact Lie Groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті